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4. N+N-+D+D 

The amplitudes for N+N —-» D+D can be expressed 
in terms of the channel amplitudes A 27, ASs) ASa, and 
A1, which are the matrix elements for the representa­
tions 27 <-> 27, 85 <-> 8, 8a <-» 8, and 1 <-> 1, respectively. 
The decuplet D represents the baryon-pion reso­
nances; the quartet #++, N+, N°, N~, the triplet 
Fi+ Fx0, F r , the doublet Z°, Z~, and the singlet IT. 
In order to consider the exchanged system, the channel 
amplitudes J535, B%7, Bio, and B8 in the crossed channel 
(NN\DD) -> (DN\DN)are listed in Table IV. 

The experimental results18'19 with _3.25-BeV/c in­
cident p indicate that j r (FrFr) /o-(Fi + Fi + ) = 7 and 
a(Y1-Y1-+Y1+Y1+)/a(N++N++)= 10~2. Also, a neces­
sary condition for the validity of the single-pion-
exchange model for p+p —> N++N++ is satisfied, which 
suggests that the B$ amplitude dominates. It is attrac-

18 T. Ferbel, J. Sandweiss, H. D. Taft, M. Gailloud, T. E. 
Kalogeropoulos, T. W. Morris, and R. M. Lea, Phys. Rev. 
Letters 9, 351 (1962). 

19 C. Baltay, J. Sandweiss, H. Taft, B. B. Culwick, W. B. 
Fowler, et al.y Phys. Rev. Letters 11, 32 (1963). 

I. INTRODUCTION 

TRADITIONALLY, electromagnetic corrections 
to strong interactions have been formulated in 

terms of off-mass-shell propagators and vertex func­
tions. For example, the usual method for calculating 
the neutron-proton mass difference consists of find­
ing the electromagnetic corrections to the nucleon 
propagator. 

On the other hand, much recent progress nTstrong 
interaction dynamics has come from a study of the 
two-body scattering amplitude on the mass shell. In 
this paper we use the on-mass-shell, S-matrix formalism 
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nology in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy. 

f NationalScience Foundation'Predoctoral Fellow. 

tive to suggest that the ratio or(FrFr)/<r(yi+Fi+) = 7 
is determined by the B21 amplitude, which leads to the 
theoretical ratio 6.25 (Table IV), but this is not possible 
as the Bs amplitude (K° exchange), rather than the B27 
amplitude, should dominate the reaction p+p —» Fi+ 

+ Fx+. The preceding attempt shows that a simple 
analysis is not possible within the framework of SU3. 

The following equalities among cross sections in (pn) 
collision are noted from Table IV: 

*(#++#+) = cr(N°N-) = f a(N+N°) 

These are consequences of SU2. A test of SU3 would 
require additional dynamical assumptions for which 
Table IV would be useful. 
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to study electromagnetic effects, including corrections 
to masses and coupling constants. 

We feel that this approach has several advantages: 
(i) According to the "bootstrap" hypothesis, all 
strongly interacting particles are bound states or 
resonances. From this point of view, the mass differ­
ences among the members of an isotopic multiplet 
result from electromagnetic corrections to the inter­
actions which hold the particles together. Now, in 
5-matrix studies, closely > related methods apply to 
both nonrelativistic and relativistic problems; one can 
therefore use the understanding of bound states, 
resonances, and perturbations on the interaction that 
one has in nonrelativistic quantum mechanics as a 
guide in relativistic problems which, according to the 
"bootstrap" hypothesis, possess these same features. 
(ii) The customary approximation scheme in strong 
interactions emphasizes the long-range parts of the 
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interaction. These are the best understood parts, and 
there exists ample evidence attesting to their im­
portance. This approximation scheme again appears 
suitable for estimating corrections due to electromag­
netic interactions, which are of even longer range. It is 
straightforward to distinguish long-range effects in the 
5-matrix approach, and it seems likely that the disper­
sion integrals for the S matrix are less sensitive to 
short-range or high-mass corrections than are the 
integrals appearing in propagators or vertex functions. 

In the following paper by D ashen, these features are 
illustrated by an application to the neutron-proton 
mass difference. Neutrons and protons are considered 
as bound-state poles in the ir-N scattering amplitude, 
and the mass difference is estimated by finding the 
difference in their binding energies. The results are in 
excellent agreement with experiment. As pointed out 
above, we expect that, in general, long-range effects 
will play a very important role in the S matrix. One 
indeed finds that the dispersion integrals for the p-n 
mass difference are almost completely dominated by 
the longest range correction to the ir-N interaction, 
namely photon exchange. 

There are a number of other possible applications 
of our formalism which would be of immediate experi­
mental interest. Among the most interesting would be 
the mass splittings in the other isospin multiplets. 
Such calculations, however, depend on parameters 
which are less well known for most multiplets than for 
pions and nucleons. For example, one would presumably 
have to known the 2 magnetic moments in order to 
compute the 2 mass differences. Further possible 
applications include the electromagnetic corrections to 
the ir-N coupling constants and the low-energy ir-N 
phase shifts. Here, our detailed knowledge of pions and 
nucleons would give the necessary parameters, but the 
amount of labor involved would be somewhat greater 
than that required to find mass differences. Similarly, 
one could obtain estimates for the corrections to low-
energy N-N scattering. Actually, our methods are not 
restricted to electromagnetic problems, and might prove 
useful in potential theory and other contexts. 

In the next section we develop the formalism within 
the framework of nonrelativistic potential scattering 
and then, in Sec. I l l , the method is carried over into 
the relativistic domain. A large part of the paper is 
devoted to a discussion of infrared divergences and 
how they can be circumvented in the most advantage­
ous manner. The reader who is not particularly in­
terested in the details of how the infrared terms are 
handled may find it advisable to read only through 
Eq. (6) in Sec. II and Eq. (24) in Sec. I l l of the present 
paper, and then proceed to the treatment of the 
neutron-proton mass difference, where our techniques 
are illustrated in the context of a practical physical 
problem. 

II. POTENTIAL SCATTERING 

Our first task is to develop, within the framework of 
nonrelativistic potential scattering, a perturbation 
theory which can be extended to relativistic problems. 
For simplicity, we consider only 5-wave scattering and 
define the amplitude 

A(s) = eil}sm7}/q, (1) 

where t\ is the phase shift, q is the momentum, and 
s—q2. We take the mass of the particle to be § so that s 
is the kinetic energy.1 It is known2 that, for a super­
position of Yukawa potentials, A is an analytic function 
of s with a right-hand cut required by unitarity and a 
left-hand cut which comes from the partial-wave pro­
jections of the Born amplitude and double spectral 
function. Given the discontinuity across the left cut, 
one can use the N/D method to obtain the amplitude A. 

We will suppose that for some strong potential V, 
the amplitude has been obtained in the form N/D, and 
derive an expression for the first-order change 8A in the 
amplitude when the problem is perturbed by an addi­
tional weak potential 8V. Let us also assume that the 
unperturbed problem has a bound state at S=SB SO 
that D(sB) = 0 and A~R/s—SB near SB9 and ask for 
the first-order change in the position and residue 8SB 
and 8R of the bound-state pole. By definition, we have 

8A=(8rj/q)e2i^ (2) 

along the right cut and 

8A-8(R/S-SB) = LR/(S-SB)228SB+18R/(S'-SB)'] (3) 

near the bound-state pole. Since the square of the 
unperturbed denominator function D2 has the phase 
e~2iri along the right-hand cut and a double zero at 
S=SB, the function D25A has no poles or right-hand cut. 
The denominator function can be chosen2 such that D 
tends to a constant as s —»<*>, and a simple application 
of Cauchy's theorem yields 

1 1 r° D2(s')Im8A(s') 
iA(s) = —-- ; ds', (4) 

D2(s)wJ-00 s'-s 

where we have used the fact that D has no left cut. 
Picking out the coefficients of the poles in (3), we find 

1 fQ D2(s')Im8A(s') 

R(Df(sB))2TrJ-a0 S'-SB 

-2RD"(sB)8sB 1 1 

8s 
1 1 rQ 

y(sB))2vLx 
-ds', (5) 

8R=-
D'{sB) (D'(sB))2* 

r° D2(s')Im8A(s') 
x / 

{S'-SB)2 
ds'. (6) 

1 We take#=c = 1 in addition to setting the kinetic energy equal 
tog2. 

2 R. Blankenbecler, M. Goldberger, N. Khuri, and S. Treiman, 
Ann. Phys. (N. Y.) 10, 62 (1960). 
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Note that the reality of 8SB and 8R is guaranteed by the 
vanishing of D(sf) at S'=SB. 

Equations (2) to (6) are completely adequate for 
treating short-range perturbations. We are developing 
the nonrelativistic formalism in this section, however, 
primarily for purposes of orientation or introduction 
to the calculation of electromagnetic corrections to the 
strong interactions. Electromagnetic corrections are 
complicated by the infrared divergence associated with 
the massless nature of the photon, which requires a 
modification of the formalism presented thus far. To 
find the appropriate modification, it is convenient to 
study a nonrelativistic perturbation which has essen­
tial features of the relativistic problem, including the 
infrared divergence. Thus, we consider a perturbing 
potential whose Fourier transform is proportional to 
(l/t~X2)(m2/t-m2)2 where t=-2q2(l-cosd). Poten­
tials of this type are characteristic of the "single-
photon exchange" potential between two strongly 
interacting particles whose form factors obey unsub-
tracted dispersion relations. The constant X is a ficti­
tious photon mass which must eventually be set equal 
to zero. 

The spatial form of the above potential is 

8V(r) = ble~Xr/r-e-mr/r+((X2-m2)/2m)e~mr2, (7) 

where we have introduced a strength parameter b 
which we assume to be small. If the photon mass X is 
set equal to zero, Eq. (7) becomes a modified Coulomb 
potential. As is well known, in the limit X •—» 0, log­
arithmic divergences will appear in the right-hand side 
of Eq. (4) for 8 A. This is, of course, due to the infinite 
range of the Coulomb potential. From elementary 
quantum mechanics, one knows that, when the pertur­
bation is summed to all orders, the divergent part 
contributes to the phase shift a term proportional to 
ln(gr), or equivalently, ln(g/X). 

The divergent term is common to all partial waves. 
Thus, above threshold it appears only as a phase 
factor exp£— (ib/q) Inqr] which multiplies the entire 
S matrix and has no observable effect. We find it 
expedient to abandon 8A and choose a new amplitude 
8A which does not contain this divergent unobservable 
phase factor for the following reasons: 

(i) The infrared factor introduces an r dependence 
into the 5-matrix element e2iv, which would otherwise 
be independent of r. In a perturbation treatment, this 
r dependence appears as a logarithmic divergence in 
8A. (ii) Below threshold q becomes i\q\, and the r 
dependence takes the form exp[— (b/\q\) In(\q\r)J 
= ( k k ) ~ 6 / l cl- The residue R of a bound-state pole will 
therefore contain a factor which is either zero or 
infinity, making 8R infinite in a perturbation treatment. 
I t is convenient to remove such factors by a redefini­
tion of the amplitude, leading to a redefined residue 
that depends only on finite quantities, (iii) Unlike the 
residue R, the binding energy SB should not have an 

infrared divergence. In an approximate evaluation of 
Eq. (5) for 8SB, however, a spurious divergence is 
likely to appear. Again, this difficulty can be avoided 
by a redefinition of the amplitude. 

The redefinition we shall employ is obtained by re­
moving from the S matrix the infrared divergent 
factor exp[—i(b/2q) ln(g(V)/X2)], where g(s) is an as 
yet unspecified function with dimension (mass)2. 
One readily verifies that 8A is then given by 8A = 8A 
+ (b/fy2)e2iriln(g(s)/\2). For any g(s), the resulting 
amplitude is well behaved in the limit X —> 0. We shall 
make use of this freedom by choosing g(s) in a way 
that minimizes the sensitivity of our dispersion rela­
tions to distant singularities, which are generally less 
well known than the nearby ones. 

I t turns out that the best choice for g(s) corresponds 
to the following 8A : 

8A = 8ri(e^/q) = (8rj-8rjBorn) (e2i*/q) , (8) 

1 r00 

&7Bom=— / sin2 (qr)8V(r)dr. (9) 
qJo 

Since ^Bom contains the same lnX dependence as 8rj, the 
infrared phase shift is indeed removed from 8A, which 
is therefore well behaved in the limit X —»0. One will 
also note that 8A has the correct threshold behavior. 
I t remains to show that, for perturbing potentials of 
the form (7), 8A should be quite insensitive to the 
distant singularities in the dispersion integrals. 

The argument about distant singularities runs as 
follows: For short-range V we can, to a good approxi­
mation, write 

1 r00 

8V=— / sin2 (qr+r))8V(r)dr. (10) 
qJ o 

Performing a few algebraic manipulations, one finds 

f °° cos2qr 
8rj = 8rj~8rjBorn=—s>in27} I - 8V(r)dr 

Jo q 

r00 sin2<7r 
-isin277 / 8V(r)dr. (11) 

Jo q 

For the perturbing potential (7) with X=0 we find, for 
| g | » w , 

&}= - (bm sm2v/Sq2)+0(bm2/qz), (12) 

which is a more rapid falloff at large q than that of 
&?Born(^l/#). Thus, as successively more distant 
singularities are included in a dispersion-theoretic cal­
culation, 8A is expected to converge more rapidly than 
would the subtracted term (8r]BoTn/q)e2i'n. 

Equation (12) was obtained from a rather special 
model, and one naturally wonders which features of the 
result are general. I t is possible, using various simple 
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forms for V and 8V, to show that the good convergence 
of 8A can hold even when V is not restricted to short 
range. The rapid convergence does depend critically, 
however, on the "smooth" r dependence of 8V which, 
as given by Eq. (7), is finite at the origin. If more 
singular behavior at the origin is admitted, or 5V is 
given a discontinuous behavior at some other r, 8rj 
falls off more slowly at large q. This is in accord with the 
physical notion that a rapid spatial variation corre­
sponds to high Fourier components in q. Of course, we 
do not know the small-distance behavior of electro­
magnetic corrections to the strong interaction, but at 
least the apparently rapid convergence of the neutron-
proton mass difference calculation in the following 
paper is consistent with a smooth cutoff 5V at inter­
mediate range. The one contribution to the really 
short-range potential on which detailed information 
is available is one-photon exchange, and here the recent 
Cambridge Electron Accelerator data3 on the proton 
form factor indicates a smooth behavior down to very 
small distances. 

Another possible reason for rapid convergence of 8A is 
that in potential theory any phase shift tends to its 
Born approximation at high energy. Thus, when 
potential theory is applicable, (87}—8r]Bom) approaches 
zero faster than 8rjBOTn at large s, independently of 
whether 8V is cut off at small distances. This argument 
is less satisfactory than the arguments of the previous 
paragraph, however, because (i) it does not imply that 
8rj approaches Ŝ Bom any faster than the unperturbed 
phase shift t] approaches its Born value; and (ii) 
unlike the potentials in ordinary potential theory, the 
strong interaction depends on energy, with the result 
that rj may approach the Born approximation very 
slowly if at all. We therefore prefer to rely primarily on 
the fact that when 8V is cut off at small distances, as in 
Eq. (12), 8rj falls off rapidly at large q no matter what 
asymptotic behavior the strong interaction phase shift 
rj may have. 

The procedure we have adopted of dropping the part 
of 8A which diverges like hi(\2/g(s)) is roughly equival­
ent to giving the photon a mass g. Our method differs 
from handling the infrared divergence by a photon 
mass, however, because g(s) depends on energy. The 
energy dependence is needed to make the dispersion 
relation for the redefined amplitude converge rapidly. 

I t is simple enough to rephrase the dispersion rela­
tions in terms of 8A. Using the fact that D28A, like 
D28A, has no poles or right-hand cut, one readily veri­
fies that Eq. (4) continues to hold if 5.4 is everywhere 
replaced by 8A. Furthermore, since 8A has the same 
double pole R8SB/(S—SB)2 as 8A [cL Eq. (3)2, one 
can replace Im8A (V) by Im8A (V) in the right-hand 
side of Eq. (5) for 8SB. Finally, if we define 8R as the 

3 K. W. Chen, A. A. Cone, J. R. Dunning, Jr., S. G. F. Frank, 
N. F. Ransey, J. K. Walker, and Richard Wilson, Phys. Rev. 
Letters 11, 561 (1963). 

coefficient of the simple pole in 8A [cf. Eq. (3)], 
then 5i? is given by (6) with I m M ( / ) replaced by 
Im8A(sV 

The following simple example will illustrate a number 
of the points discussed above. The example involves a 
comparison between a standard method for calculating 
8SB and the 5-matrix method of the present paper. 
The standard expression for 8SB is given by 

8SB -F 
Jo 

\*\28Vdr, (13) 

where ^ is the unperturbed wave function. We take (7) 
for 8V and, for simplicity, assume that V is of very short 
range. For short-range V, we can set 

| ^ | 2 « 2 | ^ | 1 / 2 e x p ( - 2 | ^ | 1 / V ) (14) 

and performing the integration in (13) with \ = 0 , 
we find 

8sB~2b\sB\ll2[ 
f /m-\-2\qB\\ m \ 

ln \ \ 
\ \ 2\qB\ I 2m+4\qB\J 

(15) 

Next we make an independent calculation of 8sB using 
the dispersion relation (5) with Im8A(s') replaced by 
ImdA(s'). We will keep only the nearby singularities in 
the dispersion integral, and then compare the results 
with (15). Since V is of short range, the only nearby 
singularities in 8A = [_8A— (8r)Bom/q)e2ili2 will come from 
the Born term in 8A and from the singularities in 
&?Born. U s i n g &4Born = &?Born/g, We find 

JmSA= (l-e2il>) Im(8r}Bom/q)= -2iq(eil> sirnj/q) 

XIm(8VBorn/q) (16) 

along the nearby part of the left cut. For the perturbing 
potential (7), it turns out that all of the singularities in 
8rjBoxn/q He in the interval — \m2<s<0. Using Eq. (5) 
and the relations eir>sinrj/q =N/D and q=i\q\, we can 
then write 

8s B~-
1 2 r° N(s')D(sf) 2 r° N(s 

;- W\— 
' IT J _m2/4 S 

R(pf(SB))2TrJ-m2ll s ' s B 

X I m ( 5 7 7 B o r n ( ^ ) / g , ) & / . ( 1 7 ) 

From the effective range approximation 

eir>smr)/q^l/(iqB-iq), (18) 

4 The favorable convergence of dispersion relations involving the 
redefined amplitude has nothing particular to do with the fact that 
we started with an infrared-divergent amplitude. This suggests the 
following treatment for other perturbation problems which have 
no infrared divergence: (i) Calculate Ŝ Bom. (ii) Define 8A as in 
Eq. (8). Calculate the dispersion relations for dA, 8SB, and 8R, 
which converge more rapidly than the dispersion relations involv­
ing the usual amplitude, (iii) The mass shift is correctly obtained 
in this way. Naturally, we do not want a redefined amplitude or 
residue as the final answer, but to obtain the final expressions for 
&4 and 8R9 one simply adds the known drjBom term back in. 
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which, for short-range V, should be good over the range 
of integration in (17); we extract N=l, D=iqB—iq, 
R= — 21 QB I, and D'(SB) = — i | QB |. The imaginary part 
of drjBom/q is known explicitly, and it turns out that the 
integral in (17) can be done analytically. The result is 
that our 5-matrix estimate (17) for 5SB is exactly the 
same as that given by (15). Notice two important points 
here, (i) We have obtained this result by keeping only 
the nearest singularity in bA. (ii) As can be easily 
verified, if we had tried to estimate 5SB by using 
Im8A(s') instead of Im8A(s') in (5), a spurious infrared 
divergence would have appeared in our expression for 
8SB- In a more complete calculation, such a divergence 
would, of course, be cancelled by a divergent term com­
ing from more distant singularities. 

III. ELECTROMAGNETIC CORRECTIONS TO THE 
STRONG INTERACTIONS 

The partial-wave scattering amplitudes which appear 
in relativistic 5-matrix theory are believed to obey 
dispersion relations similar to those which occur in 
potential scattering theory and, with a few modifica­
tions, the results of the previous section will be ap­
plicable to relativistic problems. For simplicity, we 
consider only elastic scattering of two spinless particles 
of equal mass. The partial-wave scattering amplitude 
then becomes 

A(s) = p(s)eivsinri} (19) 

where s is the total center-of-mass energy squared and 
p is a function which removes the kinematic singu­
larities. [p is the analog of the factor 1/q in (1). Note 
that s has been given a new definition."] The phase shift 
t] is in general complex and a measure of the inelasticity 
is given by 

I(s) = h\e^\ (20) 

We assume that A is an analytic function of s with a 
right-hand cut controlled by unitarity in the s channel 
and a left-hand cut controlled by unitarity in the t and 
u channels. In order to apply the N/D method, we must 
now be given both ImA along the left cut, and / , or 
equivalently, Imr\ along the right cut as input 
information. 

Again we assume that the strong-interaction ampli­
tude A has been obtained in the form N/D, and ask for 
the first-order change in A when the electromagnetic 
corrections are added to the input. We also assume 
that the unperturbed and perturbed problems have 
bound-state poles at SB and SB+8SB with residues R and 
R+8Ry respectively. 

In potential theory, the function D28A had no right-
hand cut, but it acquires one in strong-interaction 
problems because 8r] has an imaginary part, and also 
because the electromagnetic mass shifts of the scattered 
particles change the kinematic factor by 8p. The analog 

of Eqs. (4) to (6) becomes 

6A(s) = -
1 1 

D2(S) 7T : / , 

D2(s')Im8A(s') 

1 
8SB = -

RlD'(sB)J X! 

•ds' 

Im[D*(s')8A(s')l 
-ds' (21) 

D*(s') Im8A (s') 
ds' 

+ 

s —SB 

Im[£>2(/)S,4(s')]. 

dR--
-2D"(SB)R8SB 

+ 

-sB 

1 

V], (22) 

X U 
D'(sB) ID'(SB)JT 

D2{s')Im8A(s') 

(S'SBY 
-ds' 

+f. 
ImlD2(s')5A(s')l 

B (s'-sBy 
•ds' (23) 

where the integrals R and L run over the left and right 
cuts and we have assumed that IPSA —> 0 for large $. 
Along the right-hand cut, 

Im(mA) = Im[Di(8IeiiK<»>/i-5p/2i)] 
= -|Z)|2S/+!Re(Z>25p). (24) 

Calculation of the new kinematic and inelasticity cor­
rections will be straightforward, with no difficulty of 
principle. 

Whenever the scattered particles are charged, infra­
red divergences occur and cause us to redefine the 
amplitude. The redefinition will be carried out in the 
same spirit as in potential scattering, and we shall men­
tion only the new features. 

To begin with, in addition to the "Coulomb diverg­
ence" already encountered in potential scattering, new 
divergences associated with bremsstrahlung appear. 
The reaction of bremsstrahlung back onto two-body 
scattering occurs in the form of diagrams where a photon 
is emitted by one of the initial particles and absorbed 
by a particle in the final state. The net effect of all such 
diagrams5'6 is to make the amplitude for scattering 
without photon emission zero—expressing the fact that 
charge cannot be accelerated without radiating. When 
all the soft photon emissions are added in, however, 
the infrared divergence cancels and the total cross 
section exhibits only a mild dependence on photon 
emission. These reasons again call for a redefinition 

6 D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. (N. Y.) 
13, 379J(1961). 

6 J. Jauch and F. Rohrlich, The Theory of Photons and Electrons 
(Addison-Wesley Publishing Company, Inc., Cambridge, 1955). 
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which will allow us to express the amplitude in terms of 
finite quantities, and to obtain residues, for example, 
which are only slightly shifted from their strong-
interaction values. Since "bremsstrahlung diagrams" 
where a photon is emitted by initial charge line in the 
s channel and absorbed by a final charge line, can also 
be interpreted in terms of final-state Coulomb interac­
tion in the t ox u channel, and the Coulomb interaction 
already required us to redefine the amplitude in 
potential scattering, it is hardly surprising that the 
"bremsstrahlung diagrams" require a redefinition of 
the amplitude. 

A minimum requirement for the redefinition of the 
amplitude is removal of the lnX dependence from 5A 
As in potential scattering, the satisfaction of this re­
quirement leaves arbitrary the coefficient of X in the 
logarithm. We could choose the coefficient in the same 
manner as in potential scattering. 

8A = 8 A -pSr/Bom^. (25) 

Here, the Born phase shift is calculated from the 
electromagnetic correction to the generalized potential 
defined by Chew and Frautschi.7 This choice would be 
expected to give the best convergence of the dispersion 
relation. On the other hand, there are many terms to 
keep track of in the relativistic case, and it is tedious 
to have to compute the contribution of each of them to 
&?Bom and make the subtraction in (25). The practical 
compromise which has been adopted in the following 
paper is to define the amplitude 

aA'=8A -pdrjinir^, (26) 

where %nfra contains the infrared terms and the other 
important high-energy contributions from the diagrams 
in which photons connect external charge lines. The 
definition adopted for 5A' is not unique, and 8Af is not 
expected to converge as rapidly as dA, but the diagrams 
in which photons connect external lines do provide the 
longest range forces and the dominant high-energy 
corrections,5 so relatively little is lost by using 8A' in 
place of dA. 

Having redefined the amplitude, one can rephrase the 
dispersion relations for the residue and mass shift in 
terms of the new amplitude, or follow a somewhat 
simplified procedure which will be described in the next 
section. 

IV. A SIMPLE METHOD FOR SUBTRACTING 
THE INFRARED TERM 

The mass shift and the redefined residue shift can be 
expressed via dispersion relations in which a term such 
as p5r}infraie

2iri has been subtracted out of 5̂ 4 in the 
integrand. The subtraction procedure in the integrand 
can become quite tedious, however, particularly in the 

7 G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 

relativistic case. We would like to describe a somewhat 
simpler way to subtract, which would give the same 
results in an exact calculation and can be shown to give 
nearly the same result in approximate calculations, 
such as the example at the end of Sec. II. To see how 
this goes, let us suppose that the input for (21) has been 
calculated with a small but finite photon mass X. The 
function p8rjinfTa has the form 

P * n n f r a = / t o h l ( X 2 / g ( * ) ) + 0 ( X ) . ( 2 7 ) 

In the limit X—>0, the right-hand side of (21) must 
therefore be equal to 8A'+e2ir>f(s) ln(X2/g(s))+0(X). 
Since any function which is logarithmically divergent 
as X —> 0 can be uniquely separated into a part which 
diverges like ln(X2/g(s)) and a part which remains 
finite as X —» 0, we can calculate dA by carrying out the 
integrations, taking the limit X —> 0, and then dropping 
all terms which diverge like ln(X2/g(,y)). 

If we define 8R! to be the residue of the simple pole in 
8A' [cf. Eq. (3)], 8R! can be extracted from Eq. (23) by 
the same prescription that has been given to find bA' 
from Eq. (21). 

The calculation of 8sB is on a rather different footing. 
As we pointed out earlier, 8SB should not diverge in the 
limit X —> 0. That the formalism is consistent with this 
property can be seen by observing that, since fyinfra ̂ a s 

no pole at S=SB, we have 

lim (s - sB)28A' = lim (s - sB)28A = R8sB. 

The limit involving 8A' is not infrared divergent so 8sB 
should be finite. The integral in Eq. (22) for 8sB, how­
ever, is just the infrared divergent integral of Eq. (21) 
for 8A, evaluated at S=SB- At the particular point 
S—SB, the coefficient of the infrared divergent part of 
this integral must vanish, but the vanishing occurs 
through cancellations among long- and short-range 
contributions which are not enforced in an approximate 
evaluation of Eq. (22). The simplest way to remedy this 
deficiency of an approximate calculation is to drop the 
term containing ln(X2/|g(^)|), since its coefficient 
should have vanished anyway.8 

In previous sections we have emphasized the rapid 
convergence of dispersion relations involving 8A'. The 
simple subtraction procedure of the present section is 
essentially equivalent and should also converge rapidly. 
The short-range contributions to (22), then, have little 
effect on 8SB and act mainly to cancel the spurious 
infrared divergence produced by integrating only over 
long-range parts. By subtracting the spurious diverg­
ence in the above manner, we can avoid the hard work 
of calculating short-range contributions with little 
loss of accuracy. 

8 We take the absolute value of g in the logarithm because Eq. 
(22) does guarantee that 5SB is real, so only the real part of 
\n(\2/g(sB)) can appear in the spurious term. 


